77 research outputs found

    Recent advances in measurement techniques for atmospheric carbon monoxide and nitrous oxide observations

    Get PDF
    International audienceCarbon monoxide (CO) and nitrous oxide (N 2 O) are two key parameters in the observation of the atmosphere, relevant to air quality and climate change, respectively. For CO, various analytical techniques have been in use over the last few decades. In contrast, N 2 O was mainly measured using gas chromatography (GC) with an electron capture detector (ECD). In recent years, new spectroscopic methods have become available which are suitable for both CO and N 2 O. These include infrared (IR) spectroscopic techniques such as cavity ring-down spectroscopy (CRDS), off-axis integrated cavity output spectroscopy (OA-ICOS) and Fourier transform infrared spectroscopy (FTIR). Corresponding instruments became recently commercially available and are increasingly used at atmospheric monitoring stations. We analysed results obtained through performance audits conducted within the framework of the Global Atmosphere Watch (GAW) quality management system of the World Meteorology Organization (WMO). These results reveal that current spectroscopic measurement techniques have clear advantages with respect to data quality objectives compared to more traditional methods for measuring CO and N 2 O. Further , they allow for a smooth continuation of historic CO and N 2 O time series. However, special care is required concerning potential water vapour interference on the CO amount fraction reported by near-IR CRDS instruments. This is reflected in the results of parallel measurement campaigns, which clearly indicate that drying the sample air leads to an improved accuracy of CO measurements with such near-IR CRDS instruments

    The Global Atmosphere Watch reactive gases measurement network

    Get PDF
    Long-term observations of reactive gases in the troposphere are important for understanding trace gas cycles and the oxidation capacity of the atmosphere, assessing impacts of emission changes, verifying numerical model simulations, and quantifying the interactions between short-lived compounds and climate change. The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) program coordinates a global network of surface stations some of which have measured reactive gases for more than 40 years. Gas species included under this umbrella are ozone, carbon monoxide, nitrogen oxides, and volatile organic compounds (VOCs). There are many challenges involved in setting-up and maintaining such a network over many decades and to ensure that data are of high quality, regularly updated and made easily accessible to users. This overview describes the GAW surface station network of reactive gases, its unique quality management framework, and discusses the data that are available from the central archive. Highlights of data use from the published literature are reviewed, and a brief outlook into the future of GAW is given. This manuscript constitutes the overview of a special feature on GAW reactive gases observations with individual papers reporting on research and data analysis of particular substances being covered by the program. - See more at: http://elementascience.org/article/info:doi/10.12952/journal.elementa.000067#sthash.cHvHu0T6.dpu

    Quantifying the effect of forest age in annual net forest carbon balance

    Get PDF
    Forests dominate carbon (C) exchanges between the terrestrial biosphere and the atmosphere on land. In the long term, the net carbon flux between forests and the atmosphere has been significantly impacted by changes in forest cover area and structure due to ecological disturbances and management activities. Current empirical approaches for estimating net ecosystem productivity (NEP) rarely consider forest age as a predictor, which represents variation in physiological processes that can respond differently to environmental drivers, and regrowth following disturbance. Here, we conduct an observational synthesis to empirically determine to what extent climate, soil properties, nitrogen deposition, forest age and management influence the spatial and interannual variability of forest NEP across 126 forest eddy-covariance flux sites worldwide. The empirical models explained up to 62% and 71% of spatio-temporal and across-site variability of annual NEP, respectively. An investigation of model structures revealed that forest age was a dominant factor of NEP spatio-temporal variability in both space and time at the global scale as compared to abiotic factors, such as nutrient availability, soil characteristics and climate. These findings emphasize the importance of forest age in quantifying spatio-temporal variation in NEP using empirical approaches

    Reversal of Long-Term Trends in Ethane Identified from the Global Atmosphere Watch Reactive Gases Measurement Network

    Full text link
    Reactive gases play an important role in climate and air pollution issues. They control the self-cleansing capability of the troposphere, contribute to air pollution and acid deposition, regulate the lifetimes and provide tracers for deciphering sources and sinks for greenhouse gases. Within GAW, the focus is placed on long-term, high-quality observations of ozone (O3), carbon monoxide (CO), volatile organic compounds (VOC), nitrogen oxides (NOx), and sulfur dioxide (SO2). More than 100 stations worldwide carry out reactive gases measurements with data reported to two World Data Centers. The reactive gases program in GAW cooperates The WMO GAW Reactive Gases Program with regional networks and other global monitoring initiatives in order to attain a complete picture of the tropospheric chemical composition. Observations are being made by in-situ monitoring, measurements from commercial routine air-crafts (e.g. IAGOS), column observations, and from flask sampling networks. Quality control and coordination of measurements between participating stations are a primary emphasis. GAW reactive gases data in rapid delivery mode are used to evaluate operational atmospheric composition forecasts in the EU Copernicus Atmospheric Monitoring Service. Oversight of the program is provided by GAW-WMO coordinated Reactive Gases Scientific Advisory Committee (RG-SAG)

    The effect of relative humidity on eddy covariance latent heat flux measurements and its implication for partitioning into transpiration and evaporation

    Get PDF
    While the eddy covariance (EC) technique is a well-established method for measuring water fluxes (i.e., evaporation or 'evapotranspiration’, ET), the measurement is susceptible to many uncertainties. One such issue is the potential underestimation of ET when relative humidity (RH) is high (>70%), due to low-pass filtering with some EC systems. Yet, this underestimation for different types of EC systems (e.g. open-path or closed-path sensors) has not been characterized for synthesis datasets such as the widely used FLUXNET2015 dataset. Here, we assess the RH-associated underestimation of latent heat fluxes (LE, or ET) from different EC systems for 163 sites in the FLUXNET2015 dataset. We found that the LE underestimation is most apparent during hours when RH is higher than 70%, predominantly observed at sites using closed-path EC systems, but the extent of the LE underestimation is highly site-specific. We then propose a machine learning based method to correct for this underestimation, and compare it to two energy balance closure based LE correction approaches (Bowen ratio correction, BRC, and attributing all errors to LE). Our correction increases LE by 189% for closed-path sites at high RH (>90%), while BRC increases LE by around 30% for all RH conditions. Additionally, we assess the influence of these corrections on ET-based transpiration (T) estimates using two different ET partitioning methods. Results show opposite responses (increasing vs. slightly decreasing T-to-ET ratios, T/ET) between the two methods when comparing T based on corrected and uncorrected LE. Overall, our results demonstrate the existence of a high RH bias in water fluxes in the FLUXNET2015 dataset and suggest that this bias is a pronounced source of uncertainty in ET measurements to be considered when estimating ecosystem T/ET and WUE.Peer reviewe

    Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe's terrestrial ecosystems : a review

    Get PDF
    Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.Peer reviewe
    corecore